

LEMBAR PERSETUJUAN

TUGAS AKHIR

ANALISIS PERBANDINGAN *QUANTITY TAKE OFF* PEKERJAAN STRUKTUR *STRAUST PILE* DAN *PILECAP* DENGAN *AUTODESK REVIT* DAN CUBICOST TAS - TRB TERHADAP PERHITUNGAN KONVENSIONAL PADA PROYEK PEMBANGUNAN AULA MASJID AGUNG SUMATERA UTARA

Telah disetujui oleh pembimbing untuk dilaksanakan ujian

Husna Rizki Maulida NIM.213015 Zunita Rahmawati NIM.213044

Program Studi Teknologi Konstruksi Bangunan Gedung

Semarang, Agustus 2024

Pembimbing

Dosen Pembimbing I

dicady

Galih Adya Taurano, S.T., M.T. NIP. 198705212010121002 Dosen Pembimbing II

Robi Fernando, S.T.,M.T. NIP. 198608282014021005

PROGRAM STUDI DIPLOMA III TEKNOLOGI KONSTRUKSI BANGUNAN GEDUNG POLITEKNIK PEKERJAAN UMUM SEMARANG TAHUN 2024

LEMBAR PENGESAHAN

ANALISIS PERBANDINGAN *QUANTITY TAKE OFF* PEKERJAAN STRUKTUR *STRAUST PILE* DAN *PILECAP* DENGAN *AUTODESK REVIT* DAN CUBICOST TAS - TRB TERHADAP PERHITUNGAN KONVENSIONAL PADA PROYEK PEMBANGUNAN AULA MASJID AGUNG SUMATERA UTARA

Tugas Akhir disusun untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Ahli Madya Teknik (A.Md.T) Politeknik Pekerjaan Umum Semarang

Oleh:

Husna Rizki Maulida NIM.213015 Zunita Rahmawati NIM.213044

Tanggal Ujian : 20 Agustus 2024

Menyetujui,

Ketua Penguji Sekretaris Penguji 1 Penguji 2

: Julmadian Abda, S.T., M.T.

: Lusman Sulaiman, S.T., M.Eng.

: Galih Adya Taurano, S.T., M.T.

: Sukardi, S.T., M.T.

Mengetahui, Ketua Program Studi Teknologi Konstruksi Bangunan Gedung

Julmadian Abda, S.T., M.T.

NIP. 197007161997011001

KATA PENGANTAR

Puji syukur atas kehadirat Tuhan Yang Maha Esa atas anugerah serta karunia – Nya, sehingga penulis dapat menyelesaikan penyusunan tugas akhir ini dengan judul "Analisis Perbandingan *Quantity Take Off* Pekerjaan Struktur *Straust pile* Dan *Pilecap* Dengan *Autodesk Revit* Dan Cubicost TAS - TRB Terhadap Perhitungan Konvensional Pada Proyek Pembangunan Aula Masjid Agung Sumatera Utara ". Tugas akhir ini ini dibuat untuk memenuhi salah satu persyaratan dalam menyelesaikan pendidikan D3 Program Studi Teknologi Konstruksi Bangunan Gedung di Politeknik Pekerjaan Umum Semarang.

Pada kesempatan ini penulis ingin menyampaikan terima kasih kepada beberapa pihak yang ikut memberikan doa serta dukungannya hingga pembuatan laporan magang selesai ini dapat selesai, yaitu :

- Bapak Ir. Brawijaya, S.E., M.Eng.I.E, MSCE, Ph.D. selaku Direktur Politeknik Pekerjaan Umum Semarang masa jabatan 2023 – sekarang ;
- 2. Bapak Syamsul Bahri, S.Si., M.T., selaku Wakil Direktur I Bidang Akademik Politeknik Pekerjaan Umum Semarang masa jabatan 2023 – sekarang ;
- 3. Bapak Ir. Iriandi Azwartika, Sp-1, selaku Wakil Direktur II Bidang Administrasi Politeknik Pekerjaan Umum Semarang masa jabatan 2023 – sekarang ;
- Bapak Hariyono Utomo, S.T., M.M., selaku Wakil Direktur III Bidang Kemahasiswaan Politeknik Pekerjaan Umum Semarang masa jabatan 2023 – sekarang;
- 5. Bapak Julmadian Abda, S.T., M.T. selaku Kepala Program Studi Teknologi Konstruksi Bangunan Gedung Politeknik Pekerjaan Umum Semarang ;
- 6. Bapak Galih Adya Taurano, S.T.,M.T. selaku dosen pembimbing I yang telah membimbing serta memberikan masukan sehingga penulis dapat menyelesaikan tugas akhir ini dengan tepat waktu ;
- 7. Bapak Robi Fernando, S.T.,M.T. selaku dosen pembimbing II yang telah membimbing serta memberikan masukan sehingga penulis dapat menyelesaikan penyusunan tugas akhir ini dengan baik ;

- 8. Seluruh dosen Program Studi Teknologi Konstruksi Bangunan Gedung Politeknik Pekerjaan Umum Semarang yang telah mendidik, memberikan banyak ilmu, serta mengajar penulis selama duduk di bangku perkuliahan ;
- 9. Bapak Akus Harmoko selaku *Project Manager* Proyek Pembangunan Aula Masjid Agung Sumatera Utara yang telah memberikan izin dan ikut berproses dalam proyek tersebut ;
- Bapak Penriadi selaku Project Engineering Manager sekaligus Project Construction Manager pada Proyek Pembangunan Aula Masjid Agung Sumatera Utara yang telah memberikan banyak ilmu serta pengalaman kepada penulis, sehingga penulis dapat menyelesaikan laporan magang ini ;
- 11. Ibu Raisa La Tanza Qafka, S.Ars. selaku *Project Control* sekaligus mentor dari mahasiswa Husna Rizki Maulida dan Zunita Rahmawati yang telah membantu proses magang dan memberikan arahan selama kegiatan magang berlangsung ;
- 12. Keluarga besar penulis atas doa serta dukungannya sehingga penulis dapat menyelesaikan penyusunan laporan magang ini dengan baik dan selesai tepat waktu;
- 13. Seluruh staff PT. Adhi Karya (Persero) pada proyek Pembangunan Masjid Agung Sumatera Utara yang telah membimbing serta memberikan ilmu baru kepada penulis ;
- Seluruh teman teman seperjuangan mahasiswa Program Studi Teknologi Konstruksi Bangunan Gedung yang telah berjuang bersama selama 3 tahun lamanya;
- 15. Semua pihak yang ikut serta dalam membantu proses penyelesaian tugas akhir ini.

Penulisan menyadari bahwa masih banyak kekurangan dari tugas akhir ini, baik dari teknik penyajian maupun materi, mengingat keterbatasan pengetahuan dan kemampuan penulis. Oleh karena itu, kritik dan saran yang membangun sangat penulis harapkan. Semoga laporan ini dapat bermanfaat bagi para pembacanya.

Semarang, 29 Agustus 2024

Penulis

DAFTAR ISI

LEMBAR PERSETUJUAN	, i
LEMBAR PENGESAHAN	ii
SURAT PERNYATAANi	ii
ABSTRAK	v
KATA PENGANTAR	v
DAFTAR ISI	ii
DAFTAR GAMBAR	X
DAFTAR TABEL	ii
DAFTAR LAMPIRAN	ii
BAB I PENDAHULUAN	1
1.1. Latar Belakang	1
1.2. Perumusan Masalah	3
1.3. Tujuan Penlitian	4
1.4. Manfaat Penelitian	4
BAB II TINJAUAN PUSTAKA	6
2.1. Landasan Teori	6
2.1.1. BIM (Building Information Modelling)	6
2.1.2. Software Autodesk Revit	7
2.1.3. Software Cubicost TAS – TRB	9
2.1.4. Analisis <i>Quantity Take Off</i> 1	0
2.2. Penelitian Terdahulu 1	0
BAB III METODOLOGI PENELITIAN 1	3
3.1. Diagram Alir Penelitian 1	3
3.2 Metode Penelitian 1	4

3.3. Wa	ıktu dan Tempat Penelitian	. 14
3.3.1.	Waktu Penelitian	. 14
3.3.2.	Tempat Penelitian	. 15
3.4. Va	riabel Penelitian	. 16
3.5. Ala	at Pengumpulan Data	. 16
3.6. Per	ngumpulan Data	. 16
3.7. Per	ngolahan Data dan Analisis Data	. 17
3.7.1.	Metode Konvensional	. 17
3.7.2.	Metode BIM menggunakan Software Autodesk Revit	. 18
3.7. <mark>3</mark> .	Metode BIM menggunakan Software Cubicost TAS TRB	. 35
<mark>3.7.4</mark> .	Rasio Selisih Volume	. 45
B <mark>AB IV P</mark> E	MBAHASAN	<mark>.</mark> 46
4.1. An	alisis Data	. 46
4 <mark>.2. Per</mark>	hitungan <i>Quantity Take Off</i> Metode Konvensional	. 46
<mark>4.2.1.</mark>	Perhitungan Straust pile	. 46
4. <mark>2.2.</mark>	Perhitungan Pilecap	. 47
4.3. Per	hitungan <i>Quantity Take Off</i> Metode BIM dengan Autodesk Revit.	. 49
4.3.1.	Perhitungan Straust pile	. 49
4.3.2.	Perhitungan <i>Pilecap</i>	. 49
4.4. Per 50	hitungan <i>Quantity Take Off</i> Metode BIM dengan <i>Cubicost</i> TAS T	RB
4.4.1.	Perhitungan Straust pile	. 50
4.4.2.	Perhitungan Pilecap	. 51
4.5. An	alisis Rasio Selisih Volume	. 53
BAB V PEN	NUTUP	. 56

5.2	Saran	57
DAFTA	R PUSTAKA	59
LAMPI	RAN x	iv

DAFTAR GAMBAR

Gambar 3. 1 Diagram Alir Penelitian	13
Gambar 3. 2 Lokasi Penelitian	15
Gambar 3. 3 Tampilan awal Autodesk Revit	18
Gambar 3. 4 Tampilan settings new models Autodesk Revit	19
Gambar 3. 5 Tampilan settings template file pada Autodesk Revit	19
Gambar 3. 6 Tampilan link cad gambar referensi pada Autodesk Revit	20
Gambar 3. 7 Tampilan input grid gambar pada Autodesk Revit	20
Gambar 3. 8 Tampilan menampilkan tampak pada Autodesk Revit	21
Gambar 3. 9 Tampilan menambahkan elevasi pada Autodesk Revit	21
Gambar 3. 10 Tampilan Isolated pada Autodesk Revit	22
Gambar 3. 11 Tampilan Edit Type Pilecap pada Software Autodesk Revit	22
Gambar 3. 12 Penempatan Elemen Pilecap pada Software Autodesk Revit	23
Gambar 3. 13 Tampilan Membuat Section pada Software Autodesk Revit	<mark></mark> 23
Gambar 3. 14 Tampilan Pembuatan Rebar pada Software Autodesk Revit	<mark></mark> 24
Gambar 3. 15 Penempatan Rebar pada Software Autodesk Revit	<mark>.</mark> . 24
Gambar 3. 16 Tampilan Pengaturan Jarak pada Numbering With Spacing	25
Gambar 3. 17 Pengaturan Quantity dan Spacing Rebar Software Autodesk F	Revit
	25
Gambar 3. 18 Hasil Penulangan Pada Elemen Pilecap	26
Gambar 3. 19 Create New Family Straust pile	26
Gambar 3. 20 Tampilan Pemilihan Family	26
Gambar 3. 21 Tampilan Referens Plane pada Software Autodesk Revit	27
Gambar 3. 22 Penempatan Circle Straust pile	27
Gambar 3. 23 Tampilan Extrusion pada elemen Straust pile	28
Gambar 3. 24 Tampilan Edit Extrusion	28
Gambar 3. 25 Tampilan Input Family Straust pile	29
Gambar 3. 26 Penempatan Straust pile	29
Gambar 3. 27 Setting Kebutuhan Rebar Straust pile	30
Gambar 3. 28 Mengatur Ketinggian dan Sambungan Straust pile	30
Gambar 3. 29 Tampilan Pembuatan Garis Tulangan Pokok	31
Gambar 3. 30 Pengaturan Dimensi Rebar Straust pile	31

Gambar 3. 31 Tampilan Edit Number Sesuai Banyakknya Tulangan Utama 32
Gambar 3. 32 Tampilan Setelah Pemodelan dan Pembesian Straust pile Selesai32
Gambar 3. 33 Tampilan Memunculkan Quantity Take Off Autodesk Revit 33
Gambar 3. 34 Tampilan Pemilihan Parameter Perhitungan Quantity Take Off 33
Gambar 3. 35 Konversi Hasil Quantity Take Off
Gambar 3. 36 Hasil Quantity Take Off pada Software Autodesk Revit
Gambar 3. 37 Tampilan Pembuatan Project Software Cubicost TAS
Gambar 3. 38 Tampilan Pengaturan Elevasi pada Software Cubicost TAS 35
Gambar 3. 39 Tampilan Menambahkan Shop Drawing Software Cubicost TAS36
Gambar 3. 40 Tampilan Pembuatan Axis Grid Software Cubicost TAS
Gambar 3. 41 Tampilan Penyesuaian Grid Software Cubicost TAS
Gambar 3. 42 Pembuatan Modelling <i>Pilecap</i> Software Cubicost TAS
Gambar 3. 43 Pemodelan Pilecap Sesuai Elevasi
Gambar 3. 44 Pembuatan Modelling Straust pile Software Cubicost TAS
Gambar 3. 45 Tampilan Setting <i>Straust pile</i>
Gambar 3. 46 Pemodelan Straust pile pada Software Cubicost TAS
Gambar 3. 47 Tampilan calculate pada Software Cubicost TAS
Gambar 3. 48 Tampilan Pemilihan Elevasi Perhitungan <i>Quantity Take Off</i> 40
Gambar 3. 49 Tampilan Memunculkan Volume pada Software Cubicost TAS . 41
Gambar 3. 50 Tampilan Export Data <i>Quantity Take Off</i> software Cubicost TAS
Gambar 3. 51 Tampilan Import Model TAS ke TRB
`Gambar 3. 52 Pemodelan Tulangan <i>Pilecap</i> pada Software Cubicost TRB 42
Gambar 3. 53 Tampilan Edit Rebar pada Software Cubicost TRB 43
Gambar 3. 54 Tampilan Calculate <i>Quantity Take Off</i> 43
Gambar 3. 55 Tampilan Memunculkan Quantity Take Off pada Software TRB 44
Gambar 3. 56 Tampilan Export Data Quantity Take Off Software Cubicost TRB

DAFTAR TABEL

Tabel 2. 1 Rincian Penelitian Terdahulu 10
Tabel 3. 1 Jadwal Penelitian 15
Tabel 4. 1 Spesifikasi Straust pile 47
Tabel 4. 2 Perhitungan Quantity Take Off Straust pile Metode Konvensional 47
Tabel 4. 3 Spesifikasi <i>Pilecap</i> 48
Tabel 4. 4 Perhitungan Quantity Take Off Pilecap Metode Konvensional
Tabel 4. 5 Rekapitulasi Quantity Take Off Beton Straust pile Aurodesk Revit 49
Tabel 4. 6 Rekapitulasi <i>Quantity Take Off</i> Beton <i>Pilecap Autodesk</i> Revit 50
Tabel 4. 7 Rekapitulasi Quantity Take Off Beton Straust pile Cubicost TAS 51
Tabel 4. 8 Rekapitulasi <i>Quantity Take Off</i> Pembesian Straust pile Cubicost TRB
Tabel 4. 9 Rekapitulasi Quantity Take Off Beton Pilecap Cubicost TAS
Tabel 4. 10 Rekapitulasi <i>Quantity Take Off</i> Pembesian <i>Pilecap</i> Cubicost TRB 52
Tabel 4. 11 Rekapitulasi Perhitungan Quantity Take Off

SEMARANG

DAFTAR LAMPIRAN

Lampiran 1 Perhitungan Quantity Take Off TAS (Pilecap)......xiv Lampiran 2 Perhitungan Quantity Take Off TAS (Straust pile)......xv Lampiran 3 Perhitungan Quantity Take Off TRB (Straust pile) xvi Lampiran 5 Perhitungan Quantity Take Off Revit (Pilecap).....xviii Lampiran 6 Perhitungan Quantity Take Off Revit (Straust pile) xix Lampiran 7 Lanjutan Perhitungan *Quantity Take Off* Revit (Straust pile) xx Lampiran 8 Lanjutan Perhitungan Quantity Take Off Revit (Straust pile) xxi Lampiran 9 Lanjutan Perhitungan *Quantity Take Off Revit (Straust pile)* xxii Lampiran 10 Lanjutan Perhitungan Quantity Take Off Revit (Straust pile)..xxiii Lampiran 12 Lanjutan Perhitungan Konvensional Beton Pekerjaan *Pilecap* ... xxv Lampiran 13 Lanjutan Perhitungan Konvensional Beton Pekerjaan Pilecap... xxvi Lampiran 14 Perhitungan Konvensional Besi Pekerjaan Pilecap...... xxvii Lampiran 15 Lanjutan Perhitungan Konvensional Besi Pekerjaan Pilecap .. xxviii Lampiran 16 Lanjutan Perhitungan Konvensional Besi Pekerjaan *Pilecap* xxix Lampiran 17 Lanjutan Perhitungan Konvensional Besi Pekerjaan *Pilecap* xxx Lampiran 18 Lanjutan Perhitungan Konvensional Besi Pekerjaan *Pilecap* xxxi Lampiran 19 Lanjutan Perhitungan Konvensional Besi Pekerjaan *Pilecap* ... xxxii Lampiran 20 Lanjutan Perhitungan Konvensional Besi Pekerjaan Pilecap ... xxxiii Lampiran 21 Lanjutan Perhitungan Konvensional Besi Pekerjaan *Pilecap* ... xxxiv Lampiran 22 Lanjutan Perhitungan Konvensional Besi Pekerjaan Pilecap ... xxxv Lampiran 23 Lanjutan Perhitungan Konvensional Besi Pekerjaan Pilecap .. xxxvi Lampiran 24 Lanjutan Perhitungan Konvensional Besi Pekerjaan Pilecap . xxxvii Lampiran 25 Perhitungan Konvensional Besi Pekerjaan Straust pile...... xxxviii Lampiran 26 Perhitungan Konvensional Besi Pekerjaan Straust pile......xxxix