

LEMBAR PERSETUJUAN

TUGAS AKHIR

IMPLEMENTASI BIM BANGUNAN PELIMPAH TIPE OGEE DAN TIPE TUTS PIANO UNTUK PEMODELAN ALIRAN BANJIR PADA PROYEK PEMBANGUNAN PENGENDALIAN BANJIR DAS SANGGAI

Telah disetujui oleh pembimbing untuk dilaksanakan ujian

Luqman Anas Yahya (211022) Eko Ardianza (211051)

Program Studi Teknologi Konstruksi Bangunan Air

Semarang, Agustus 2024

Pembimbing 1

Pranu Årisanto, S.T, M.T. NIP. 198305062010121004 Pembimbing 2

Didit Puji Riyanto, S.T, M.T NIP. 1984100220101121001

PROGRAM STUDI DIPLOMA III TEKNOLOGI KONSTRUKSI BANGUNAN AIR POLITEKNIK PEKERJAAN UMUM

2024

LEMBAR PENGESAHAN

TUGAS AKHIR

Judul	: Implementasi BIM Bangunan Pelimpah Tipe Ogee Dan Tipe Tuts Piano
	Untuk Pemodelan Aliran Banjir Pada Proyek Pembangunan Pengendalian
	Banjir DAS Sanggai
Oleh	: 1. Luqman Anas Yahya
	: 2. Eko Ardianza
NIM	: 1. 211022
	: 2. 211051
	Telah diuji pada :
Hani	. Selare

20 Agustus 2024
Ruang Sidang 1

Mengetahui/Menyetujui :

Dosen Penguji 1

<u>Tia Hetwisari, S.T. M.T.</u> NIP 199611032022032011

Dosen Pembimbing 1

Pranu Arisanto, S.T., M.T. NIP. 198305062010121004

Dosen Penguji 2

Ingerawi Sekaring Bumi, S.T. M.T. NIP. 198403262008122001 Dosen Pembimbing 2

Didit Puji Riyanto, S.T., M.T. NIP. 1984100220101121001

IMPLEMENTASI BIM BANGUNAN PELIMPAH TIPE OGEE DAN TIPE TUTS PIANO UNTUK PEMODELAN ALIRAN BANJIR PADA PROYEK PEMBANGUNAN PENGENDALIAN BANJIR DAS SANGGAI

Tugas Akhir disusun untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Ahli Madya Teknik (A.Md.T) Politeknik Pekerjaan Umum Semarang

Oleh :

Luqman Anas Yahya (211022) Eko Ardianza (211051)

Tanggal Ujian: 20 Agustus 2024

Menyetujui,

Ketua Penguji	: Pranu Arisanto, S.T, M.T.
Sekretaris	: Didit Puji Riyanto, S.T, M.T.
Penguji 1	: Tia Hetwisari, S.T, M.T.
Penguji 2	: Ingerawi Sekaring Bumi, S.T, M.T

Mengetahui,

Ka Prodi Teknologi Konstruksi Bangunan Air

<u>Suhardi, S.T, MPSDA.</u> NIP. 197510072005021001

KEMENTERIAN PEKERJAAN UMUM DAN PERUMAHAN RAKYAT BADAN PENGEMBANGAN SUMBER DAYA MANUSIA POLITEKNIK PEKERJAAN UMUM

Jalan Soekarno Hatta Nomor 100 - Gayamsari - Semarang 50166, Telepon (024) 7472848, Faximile (024) 7472848 Website : www.politeknikpu.ac.id | e-mail : info@politeknikpu.ac.id

PROGRAM STUDI TEKNOLOGI KONSTRUKSI BANGUNAN AIR

POLITEKNIK PEKERJAAN UMUM

LEMBAR ASISTENSI

TUGAS AKHIR

NAMA MAHASISWA	1	:	LUQMAN ANAS YAHYA NIM 211022
	2	:	EKO ARDIANZA NIM 211051
NAMA PERUSAHAAN		:	PT. ADHI - ABIPRAYA, KSO
NAMA PEKERJAAN		:	PROYEK PEMBANGUNAN PENGENDALIAN BANJIR DAS SANGGAI 1A LANJUTAN (KIPP) (IKN)
LOKASI		:	KABUPATEN PENAJAM PASER UTARA PROVINSI KALIMANTAN TIMUR
DOSEN PEMBIMBING	1	:	PRANU ARISANTO S.T., M.T.
	2	:	DIDIT PUJI RIYANTO S.T., M.T.

No	Hari/Tanggal	Uraian	Tanda Tangan
0	17-07-'24	 Bataran maralah ditinzav ulang Tuzuan penelitian diperbaiki lagi penulirannya Latar Belakang diperkuot Pemodelan Bint ditambahkan pada tuzuan penelitian Menambahkan flow chart BIM 	₹¥
6	21 - 07- 24	 Perbaikan penulisan kalimat serapan bahara asing Penomoran gambar & tabel diperbaiki Penomoran gambar & tabel dihubungkan dengan harasi kalimat 	₩.

L

KEMENTERIAN PEKERJAAN UMUM DAN PERUMAHAN RAKYAT BADAN PENGEMBANGAN SUMBER DAYA MANUSIA

POLITEKNIK PEKERJAAN UMUM Jalan Soekarno Hatta Nomor 100 - Gayamsari - Semarang 50166, Telepon (024) 7472848, Faximile (024) 7472848 Website:www.politeknikpu.ac.idle-mail:info@politeknikpu.ac.id

No	Hari/Tanggal	Uraian	Tanda Tangan
5	07 - 08 - '24	 Melengkapi tinzavan purtaka Makrud ktuzuan penelitian harur terzawab pada kerimpulan Perbaikan format penuliran gambar & tabel perramaan yang digunakan harur terikat dengan narari kalimat Ditambahkan rketra muka air banzir yang melimpar pada pelimpah 	₽.
4. 5.	13.08 29	Porboiki gombor don tobel yg kurang jolas torbasa. V	₽ . ₽ .
		Acc	

PERNYATAAN

Kami yang bertanda tangan di bawah ini:

Nama : 1. Luqman Anas Yahya (211022) 2. Eko Ardianza (211051)

Menyatakan dengan sesungguhnya bahwa Tugas Akhir yang berjudul "Implementasi BIM Bangunan Pelimpah tipe Ogee dan tipe Tuts Piano untuk Simulasi Aliran Banjir pada Pembangunan Pengendalian Banjir DAS Sanggai" ini adalah benar-benar hasil karya sendiri, kecuali jika disebutkan sumbernya dan belum pernah diajukan pada institusi manapun, serta bukan karya jiplakan/plagiat. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi. Demikian pernyataan ini saya buat dengan sebenarnya, tanpa adanya tekanan dan paksaan dari pihak manapun serta bersedia mendapat sanksi akademik jika ternyata di kemudian hari pernyataan ini tidak benar.

> Semarang, Agustus 2024 Yang Menyatakan,

20 Lugman Anas Yahya NIM. 211022

PERSEMBAHAN

Teruntuk Tiga: Satu, Almamaterku. Dua, Satya Tirta. Tiga, Bapak, dan Ibuku yang setengah malaikat.

SEMARANG

ΜΟΤΤΟ

JAANI "Berbahagialah dia yang makan dari keringatnya sendiri, bersuka karena usahanya sendiri, dan maju karena pengalamannya sendiri."

SEMARANG

EKER

-Pramoedya Ananta Toer"

KATA PENGANTAR

Puji dan Syukur penulis panjatkan Kehadirat Tuhan yang Maha Esa, yang atas berkat Rahmat dan karunian-Nya, penulis dapat menyelesaikan penyusunan Tugas Akhir yang berjudul **"Implementasi BIM Bangunan Pelimpah Tipe Ogee dan Tuts Piano untuk Pemodelan Aliran Banjir pada Proyek Pembangunan Pengendalian Banjir DAS Sanggai"**. Tugas akhir ini disusun guna memenuhi salah satu syarat dalam menempuh Sidang Tugas Akhir guna memperoleh gelar Ahli Madya Teknik (A.Md.T). dalam menyusun Tugas Akhir ini penulis banyak mendapatkan dukungan dan bantuan dari pihak-pihak lain, sehingga dalam kesempatan ini, penulis ingin mengucapkan terima kasih kepada:

- 1. Allah SWT yang selalu memberikan petunjuk dan kelancaran bagi penulis dalam menyelesaikan penyusunan Tugas Akhir ini.
- 2. Kedua orang tua penulis, yang selalu memberikan dukungan dan doa secara lahir dan batin.
- 3. Bapak Pranu Arisanto, S.T, M.T. selaku Dosen Pembimbing I yang telah banyak memberikan arahan dan bimbingan kepada penulis dalam penyusunan Tugas Akhir.
- 4. Bapak Didit Puji Riyanto, S.T, M.T. selaku Dosen Pembimbing II yang telah banyak memberikan arahan dan bimbingan kepada penulis dalam penyusunan Tugas Akhir.
- 5. Bapak Ir. Miftah Ardiansyah S.T, M.T. selaku Project Manager yang telah menerima dan memberikan kesempatan kepada penulis untuk dapat melaksanakan magang di Proyek Pembangunan Pengendalian Banjir DAS Sanggai 1A Lanjutan (KIPP) (IKN)
- 6. Bapak Ir. Asrul Mariadi, S.T, M.T. dan Bapak Imaddudin Edwin Satria D, S.T. selaku mentor selama penulis melaksanakan magang dan penelitian Tugas Akhir yang selalu mendukung dan mengarahkan penulis dengan baik, sehingga penulis dapat menyelesaikan Tugas Akhir dengan tepat waktu.
- Rekan-rekan Proyek Pembangunan Pengendalian Banjir DAS Sanggai 1A Lanjutan (KIPP) (IKN) yang telah membantu dan memberikan semangat kepada penulis dalam penyusunan Tugas Akhir ini.
- 8. Seluruh pihak yang secara langsung maupun tidak langsung telah membantu penulis dalam penyusunan Tugas Akhir ini.

Penulis menyadari sepenuhnya bahwa masih banyak kekurangan dalam penulisan Tugas Akhir ini. untuk itu penulis mengharapkan kritik dan saran dari semua pihak, sehingga penulis dapat memperbaikinya. Akhir kata semoga Tugas Akhir ini dapat bermanfaat bagi penulis maupun pembaca untuk menambah pengetahuan di bidang Teknik Sipil khusunya berkaitan dengan Sumber Daya Air.

DAFTAR ISI

KATA PENGANTARii
DAFTAR ISIiv
DAFTAR GAMBARvii
DAFTAR TABELxii
DAFTAR LAMPIRANxiv
BAB I PENDAHULUAN1
1.1 Latar Belakang1
1.2 Rumusan Masalah
1.3 Batasan Masalah
1.4 Tujuan Penelitian
1.5 Manfaat Penelitian
BAB II TINJAUAN PUSTAKA
2.1 Kolam Re <mark>tensi</mark>
2.2 Bangunan Pelimpah
2.2.1 Tipe Ban <mark>gunan Pelimpah Berdasarkan Fungsi</mark> 8
2.2.2 Tipe Bangunan Pelimpah Berdasarkan Bentuk
2.2.3 Komponen Ba <mark>ngunan Pelim</mark> pah14
2.3 Analisis Data Hidrologi
2.3.1 Pengisian Data Hujan yang Hilang15
2.3.2 Perhitungan Curah Hujan Rata-Rata17
2.3.3 Analisis Frekuensi Curah Hujan19
2.3.4 Uji Kecocokan Distribusi Frekuensi Curah Hujan
2.3.5 Analisis Distribusi Hujan
2.3.6 Analisis Debit Banjir Rencana27

2.3.7 Lengkung Kapasitas Waduk	32
2.3.8 Analisis Penelusuran Banjir Melalui Waduk (Reservoir Routing)	33
2.4 Building Information Modelling (BIM)	34
2.4.1 Karakteristik Building Information Modelling (BIM)	34
2.4.2 Dimensi Building Information Modelling (BIM)	36
2.4.3 Manfaat Building Information Modelling (BIM)	39
2.4.4 Pemodelan Dimensi BIM 3D Bangunan Pelimpah pada Autodesk Civil 3D	40
2.4.5 Pemodelan Dimensi BIM 6D Bangunan Pelimpah pada HEC-RAS 2D	42
BAB III METODOLOGI PENELITIAN	43
3.1 Bagan Alir	43
3.2 Waktu dan Tempat Penelitian	44
3.2.1 Waktu Penelitian	44
3.2.2 Lokasi Penelitian	45
3.3 Metode Pengumpulan Data	47
3.4 Metode Pengolahan Data dan Analisis Data	48
3.4.1 Pemodelan Informasi Geografis menggunakan QGIS	48
3.4.2 Pemodelan Hidrologi pada HEC-HMS	48
3.4.3 Pemodelan Dimensi BIM 3D pada Autodesk Civil 3D	48
3.4.4 Pemodelan Dimensi BIM 6D pada HEC-RAS 2D	49
BAB IV HASIL PENELITIAN DAN PEMBAHASAN	50
4.1 Data Teknis	50
4.1.1 Pelimpah tipe Ogee	50
4.1.2 Pelimpah tipe Tuts Piano	51
4.2 Analisis Informasi Geografis	51
4.2.1 Delineasi Daerah Aliran Sungai (DAS)	51
4.2.2 Luasan Pengaruh Stasiun Hujan	57
4.2.3 Luasan Tata Guna Lahan	58

4.3 Analisis Data Hidrologi61
4.3.1 Pengisian Data Hujan yang Hilang61
4.3.2 Analisis Curah Hujan Rata-Rata63
4.3.3 Analisis Frekuensi Curah Hujan65
4.3.4 Uji Kecocokan Distribusi Frekuensi Curah Hujan67
4.3.5 Analisis Distribusi Hujan70
4.3.6 Analisis Debit Rencana
4.3.7 Analisis Lengkung Kapasitas Waduk
4.4 Pemodelan Dimensi BIM 3D Bangunan Pelimpah
4.4.1 Pemodelan Bangunan Pelimpah tipe Ogee
4.4.2 Pemodelan Bangunan Pelimpah tipe Tuts Piano
4.5 Pemodelan Dimensi BIM 6D Aliran Banjir Melalui Bangunan Pelimpah 123
4.5.1 Pemodelan Aliran Banjir Pelimpah tipe Ogee
4.5.2 Pem <mark>odelan Aliran Banjir Pelimpah t</mark> ipe Tuts Piano
BAB V KESIMPULAN DAN SARAN
5.1 Kesimpulan
5.2 Saran
DAFTAR PUSTAKA
LAMPIRAN

DAFTAR GAMBAR

Gambar 2. 1 Kolam Retensi yang Beradadi Samping Badan Sungai	7
Gambar 2. 2 Kolam Retensi yang Berada di Dalam Badan Sungai	
Gambar 2. 3 Pelimpah Luncur (Chute Spillway)	10
Gambar 2. 4 Pelimpah Samping (Side Channel Spillway)	10
Gambar 2. 5 Pelimpah Corong (Shaft Spillway/Morning Glory)	11
Gambar 2. 6 Pelimpah Shipon (Shipon Spillway)	
Gambar 2. 7 Pelimpah Labirin (Labirint Spillway)	12
Gambar 2. 8 Spillway Inlet Bak Terjun (Box Inlet Drop Spillway)	
Gambar 2. 9 Pelimpah Ogee (Ogee Spillway)	14
Gambar 2. 10 Pelim <mark>pah Tuts P</mark> iano	
Gambar 2. 11 Komponen Bangunan Pelimpah	
Gambar 2. 12 Metode Poligon Thiessen	
Gambar 2. 13 Metode Isohiet	19
Gambar 2. 14 Logo Perangkat Lunak HEC-HMS	
Gambar 2. 15 L <mark>engkung Kapasitas Waduk</mark>	
Gambar 2. 16 S <mark>Iklus Konstru</mark> ksi dengan Menggun <mark>akan BIM</mark>	35
Gambar 2. 17 Pro <mark>ses Konstru</mark> ksi secara tradisional (kiri) dan modernisasi melalui BIM	
(kan <mark>an)</mark>	
Gambar 2. 18 Dimen <mark>si BIM</mark>	
Gambar 2. 19 Dimensi BIM 3D (Desain 3D)	
Gambar 2. 20 Dimensi B <mark>IM 4D (Time/Scheduling)</mark>	
Gambar 2. 21 Dimensi BIM 5D (Estimasi Biaya)	
Gambar 2. 22 Dimensi BIM 6D (Suistaiability)	
Gambar 2. 23 Dimensi BIM 7D (Facility Management Aplication)	39
Gambar 2. 24 Logo Perangkat Lunak Autodesk Civil 3D	40
Gambar 2. 25 Tampilan Subassembly Composser Autodesk Civil 3D	
Gambar 2. 26 Logo Perangkat Lunak HEC-RAS	42
Gambar 3. 1 Bagan Alir	44
Gambar 3. 2 Lokasi Proyek Pembangunan Pengendalian Banjir DAS Sanggai 1A Lanju	ıtan
(KIPP) (IKN)	46

Gambar 3. 3 Detail Lokasi Proyek	46
Gambar 3. 4 Lokasi Penelitian Kolam Retensi TR-01	47
Gambar 4. 1 Detail Bangunan Pelimpah tipe Ogee	50
Gambar 4. 2 Detail Bangunan Pelimpah tipe Tuts Piano	51
Gambar 4. 3 Terrain Data HEC-HMS 4.10	52
Gambar 4. 4 Preprocess Sinks HEC-HMS 4.10	53
Gambar 4. 5 Preprocess Drainage	53
Gambar 4. 6 Identify Streams	54
Gambar 4. 7 Break Point Creation	54
Gambar 4. 8 Delineate Elements	55
Gambar 4. 9 Hasil Delineasi DAS menggunakan HEC-HMS 4.10	55
Gambar 4. 10 Hasil Analisis Polygon Thiessen	57
Gambar 4. 11 Tata Guna Lahan DAS Sanggai	59
Gambar 4. 12 Lo <mark>kasi Stasiun Hujan</mark> di Sekitar Lokasi Penelitian	61
Gambar 4. 13 <mark>Hasil Pengolahan Distribusi Norma</mark> l	67
Gambar 4. 14 Hasil Pengolahan Distribusi Log Normal	68
Gambar 4. 15 Hasil Pengolahan Distribusi Log Pearson III	68
Gambar 4. 16 H <mark>asil Pengolahan Distribusi Gumbel</mark>	69
Gambar 4. 17 H <mark>idrograf Sub-</mark> Basin 5 (Kolam Rete <mark>nsi TR-01)</mark>	79
Gambar 4. 18 Gr <mark>afik Hubung</mark> an Elevasi, Luas Genangan, dan Vo <mark>lume</mark>	81
Gambar 4. 19 Bag <mark>an Alir Pemodelan Bangunan Pelimpah tipe Tuts Piano</mark> menggunakan	
Autodesk Civil 3D	82
Gambar 4. 20 Membuat Surface di Autodesk Civil 3D	83
Gambar 4. 21 Add DEM file for Surface Definition pada Autodesk Civil 3D	83
Gambar 4. 22 Tampilan Surface dari Data DEM	84
Gambar 4. 23 Import Point pada Autodesk Civil 3D	84
Gambar 4. 24 Tampilan Koordinat yang Telat Diinput	85
Gambar 4. 25 Membuat Alinyemen Horizontal DPT	86
Gambar 4. 26 Membuat 2 Garis 3d Polyline (Atas & Bawah) dengan Elevasi Vertex sesuai	
elevasi rencana DPT 3	86
Gambar 4. 27 Membuat garis 3D Polyline Bagian Atas menjadi Feature Line	87
Gambar 4. 28 Tampilan Alineyemen Horizontal dan Feature Line DPT	87
Gambar 4. 29 Membuat Alinyemen Vertikal DPT	88

Gambar 4. 30 Membuat Target Profil pada Alinyemen Vertikal DPT
Gambar 4. 31 Tampilan Alinyemen Vertikal DPT 189
Gambar 4. 32 Tampilan Alinyemen Vertikal DPT 2
Gambar 4. 33 Tampilan 3D Polyline (Bawah) dan Feature Line (Atas) DPT 390
Gambar 4. 34 Membuat Assembly DPT90
Gambar 4. 35 Membuat Sub-Assembly DPT 1 dengan memberikan target elevasi sehingga
dapat digunakan untuk Sub-Assembly DPT 3 pada Subassembly Composer91
Gambar 4. 36 Tampilan Assembly DPT 1 & 391
Gambar 4. 37 Membuat Sub-Assembly DPT 1 pada Subassembly Composer
Gambar 4. 38 Tampilan Assembly DPT 292
Gambar 4. 39 Membuat Alinyemen Horizontal Pelimpah93
Gambar 4. 40 Tampilan Alinyemen Horizontal Pelimpah93
Gambar 4. 41 Membuat Alinyemen Vertical Pelimpah
Gambar 4. 42 Me <mark>mbuat Target Profil Alinyemen Vertikal Pelimp</mark> ahah. 94
Gambar 4. 43 <mark>Tampilan Alinyemen Vertikal Pelim</mark> pah95
Gambar 4. 44 Membuat Assembly Pelimpah tipe Ogee
Gambar 4. 45 Membuat Sub-Assembly Pelimpah Ogee pada Subassembly Composser Civil
3 <mark>D</mark>
Gambar 4. 46 T <mark>ampilan Sub-</mark> Assembly Pelimpah t <mark>ipe Ogee</mark>
Gambar 4. 47 M <mark>embuat Corr</mark> idor Bangunan Pelimpah tipe Ogee <mark>Menggunak</mark> an Alinyemen. 97
Gambar 4. 48 Corr <mark>idor Khusus DPT 3 dibuat Menggunakan Feature Line</mark>
Gambar 4. 49 Featur <mark>e Line Coridor DPT 3 menggunakan target elevasi</mark> pada 3D Polyline
(bawah)
Gambar 4. 50 Tampilan Corridor Bangunan Pelimpah tipe Ogee
Gambar 4. 51 Membuat Surface Bangunan Pelimpah99
Gambar 4. 52 Tampilan Surface Pelimpah tipe Ogee99
Gambar 4. 53 Hasil Ekspor Surface Bangunan Pelimpah tipe Ogee Menjadi Data DEM 100
Gambar 4. 54 Hasil Penggabungan Data DEM Bangunan Pelimpah tipe Ogee dan Data DEM
lainnya100
Gambar 4. 55 Bagan Alir Pemodelan Bangunan Pelimpah tipe Tuts Piano menggunakan
Autodesk Civil 3D101
Gambar 4. 56 Membuat surface di Autodesk Civil 3D 102
Gambar 4. 57 Add DEM file for Surface Definition pada Autodesk Civil 3D 102

Gambar 4. 58 Tampilan surface dari data DEM	103
Gambar 4. 59 Import Point pada Autodesk Civil 3D	103
Gambar 4. 60 Tampilan Koordinat yang telah diinput	104
Gambar 4. 61 Membuat Alinyemen Horizontal DPT	105
Gambar 4. 62 Tampilan Alinyemen Horizontal DPT	105
Gambar 4. 63 Membuat Alinyemen Vertikal DPT	106
Gambar 4. 64 Membuat Target Profil Pada Alinyemen Vertikal DPT	106
Gambar 4. 65 Tampilan Alinyemen Vertikal DPT 1	107
Gambar 4. 66 Tampilan Alinyemen Vertikal DPT 2	107
Gambar 4. 67 Tampilan Alinyemen Vertikal DPT 3	108
Gambar 4. 68 Membuat Assembly DPT	108
Gambar 4. 69 Membuat Sub-Assembly DPT 1 pada Subassembly Composer	109
Gambar 4. 70 Tampilan Assembly DPT 1 & 3	109
Gambar 4. 71 Membuat Sub-Assembly DPT 2 pada Subassembly Composer Autodesk C	ivil
3D	110
Gambar 4. 72 Tampilan Assembly DPT 2	110
Gambar 4. 73 Membuat Alinyemen Horizontal Pelimpah	111
Gambar 4. 74 Tampilan Alinyemen Horizontal Pelimpah	111
Gambar 4. 75 M <mark>embuat Alin</mark> yemen Certikal Pelim <mark>pah</mark>	112
Gambar 4. 76 Membuat Target Profil Alinyemen Vertikal Pelimp <mark>ah</mark>	112
Gambar 4. 77 Tam <mark>pilan Alinyemen Vertikal Pelimpah</mark>	113
Gambar 4. 78 Membuat Assembly Pelimpah	113
Gambar 4. 79 Membuat Sub-Assembly Pelimpah pada Subassembly Composser Civil 3D) 114
Gambar 4. 80 Tampilan Subbsasembly Pelimpah	114
Gambar 4. 81 Membuat Alinyemen Horizontal Mercu Tuts Piano	115
Gambar 4. 82 Tampilan Alinyemen Horizontal Mercu Tut Piano	115
Gambar 4. 83 Membuat A; inyemen Vertikal Mercu Tuts Piano	116
Gambar 4. 84 Membuat Target Profil Alinyemen Vertikal Mercu Tuts Piano	116
Gambar 4. 85 Tampilan Alinyemen Vertikal Mercu Tuts Piano	117
Gambar 4. 86 Membuat Assembly Mercu Tuts Piano	117
Gambar 4. 87 Membuat Sub-Assembly Mercu Tuts Piano pada Subassembly Composser	
Autodesk Civil 3D	118
Gambar 4. 88 Tampilan Subassembly Mercu Tuts Piano	118

Gambar 4. 89 Membuat Corridor Bangunan Pelimpah tipe Tuts Piano	119
Gambar 4. 90 Tampilan Corridor Bangunan Pelimpah tipe Tuts Piano	119
Gambar 4. 91 Membuat Surface Bangunan Pelimpah	
Gambar 4. 92 Tampilan Surface DPT Pelimpah	
Gambar 4. 93 Tampilan Surface DPT Pelimpah	
Gambar 4. 94 Mengekspor Data Surfece menjadi Data DEM	
Gambar 4. 95 Hasil Ekspor Surface Bangunan Pelimpah tipe Tuts Piano Menjadi Da	ta DEM
	122
Gambar 4. 96 Hasil Penggabungan Data DEM Bangunan Pelimpah tipe Tuts Piano d	lan Data
DEM lainnya	
Gambar 4. 97 Aliran Sungai Trunen	
Gambar 4. 98 Model 3D Bangunan Pelimpah tipe Ogee	
Gambar 4. 99 Hidrograf Banjir Kolam Retensi TR-01 dengan Bangunan Pelimpah ti	pe Ogee
	125
Gambar 4. 10 <mark>0 Pemodelan Aliran Banjir Kolam R</mark> etensi TR-01 dengan Bangunan Pe	elimpah
tipe Ogee	
Gambar 4. 101 Detail Aliran Banjir pada Bangunan Pelimpah tipe Ogee	
Gambar 4. 102 Potongan Melintang Muka Air pada Bangunan Pelimpah tipe Ogee	
Gambar 4. 103 Kecepatan Aliran Banjir Kolam Retensi TR-01 dengan Bangunan Pe	limpah
tip <mark>e Ogee</mark>	
Gambar 4. 104 Detail Kecepatan Banjir pada Bangunan Pelimpah tipe Ogee	
Gambar 4. 105 Model 3D Bangunan Pelimpah tipe Tuts Piano	
Gambar 4. 106 Hidrograf Banjir Kolam Retensi TR-01 dengan Bangunan Pelimpah t	tipe Tuts
Piano	
Gambar 4. 107 Pemodelan Aliran Banjir Kolam Retensi TR-01 dengan Bangunan Pe	elimpah
tipe Tuts Piano	
Gambar 4. 108 Detail Aliran Banjir pada Bangunan Pelimpah tipe Tuts Piano	
Gambar 4. 109 Potongan Melintang Muka Air pada Bangunan Pelimpah tipe Tuts Pi	ano 132
Gambar 4. 110 Kecepatan Aliran Banjir Kolam Retensi TR-01 dengan Bangunan Pel	limpah
tipe Tuts Piano	
Gambar 4. 111 Detail Kecepatan Banjir pada Bangunan Pelimpah tipe Tuts Piano	
Gambar 4. 112 Sketsa Muka Air Kolam Retensi	

DAFTAR TABEL

Tabel 2. 1 Variabel Reduksi Gauss	
Tabel 2. 2 Nilai X ² Kritis untuk Uji Chi-Kuadrat	
Tabel 2. 3 Nilai D kritis untuk Uji Smirnov-Kolmogorov	
Tabel 2. 4 Koordinat Hidrograf Satuan Tak Berdimnesi SCS	
Tabel 2. 5 Nilai Curve Number	
Tabel 2. 6 Nilai Impervious Area	
Tabel 3. 1 Action Plan Penelitian	
Tabel 4. 1 Luasan masing-masing Sub-DAS	55
Tabel 4. 2 Panjang masing-masing Anak Sungai	56
Tabel 4. 3 Luasan Pengaruh dari Masing-masing Stasiun Hujan	58
Tabel 4. 4 Tata Guna Lahan DAS Sanggai	60
Tabel 4. 5 Curah Hujan di setiap Stasiun Hujan Pengamatan	
Tabel 4. 6 Jar <mark>ak Antar Stasiun Pengamatan</mark>	
Tabel 4. 7 Cur <mark>ah Hujan Hasil Pengisian Data</mark> yan <mark>g Hilang</mark>	
Tabel 4. 8 Data Curah Hujan Maksimum	64
Tabel 4. 9 Perhi <mark>tungan Param</mark> eter Statistika Data <mark>Hujan</mark>	65
Tabel 4. 10 Perhi <mark>tungan Para</mark> meter Statistika Log Data Hujan	66
Tabel 4. 11 Hasil Uji Kecocokan Distribusi Frekuensi Curah Hujan	69
Tabel 4. 12 Curah H <mark>ujan Kala Ulang Tahunan</mark>	
Tabel 4. 13 Curah Huj <mark>an Efektif Tiap Jam</mark>	
Tabel 4. 14 Hasil Perhitungan Curve Number Composite	73
Tabel 4. 15 Hasil Perhitungan Impervious Area Composite	
Tabel 4. 16 Data Panjang dan Kemiringan Sungai di DAS Sanggai	
Tabel 4. 17 Hasil Perhitungan Lag Time	
Tabel 4. 18 Data Time Series	
Tabel 4. 19 Inflow Sub-Basin 5 (Kolam Retensi TR-01)	
Tabel 4. 20 Perhitungan Lengkung Kapasitas Waduk	80
Tabel 4. 21 Time Series Table Kolam Retensi TR-01 dengan Bangunan Pelimpah tipe	Ogee
	124

Tabel 4. 22 Time Serie	s Table Kolam Retensi TR	-01 dengan Bangur	nan Pelimpah tipe Tuts	
Piano		••••••••••••••••••••••••••••••	1	29

DAFTAR LAMPIRAN

Lampiran.1 Data Curah Hujan Harian Pos Curah Hujan Sepaku
Lampiran.2 Data Curah Hujan Harian Pos Curah Hujan Pamaluan
Lampiran.3 Data Curah Hujan Harian Pos Curah Hujan Waru
Lampiran.4 Data Curah Hujan Harian Pos Curah Hujan Samboja
Lampiran.5 Data Hasil Analisa HEC RAS-2D Spillway Tipe Ogee
Lampiran.6 Data Hasil Analisa HEC RAS-2D Spillway Tipe Tuts Piano
Lampiran.7 Shop Drawing Struktuk Spillway Kolam Retensi TR-01 (Tipe Ogee)
Lampiran.8 Shop Drawing Struktur Spillway Kolam Retensi TR-01 (Tipe Tuts Piano)

