

LEMBAR PERSETUJUAN

TUGAS AKHIR perhitungan *Quantity takeoff* pekerjaan struktur menggunakan glodon cubicost dan autodesk revit pada proyek rumah sakit tni au surakarta

Telah disetujui oleh pembimbing untuk dilaksanakan ujian

Seno Hartono Putro NIM. 203011 <u>Alya Putri Febriyuni</u> NIM. 203028

Semarang, 3 Agustus 2023

Dosen Rembimbing I

Agung Bhakti Utama, S.T., M.Sc. NIP.198502162009121002 Dosen Pembimbing II

Febri Fahmi Hakim, S.T., M.T., M.Sc. NIP. 198202182008121002

PROGRAM STUDI TEKNLOGI KONSTRUKSI BANGUNAN GEDUNG POLITEKNIK PEKERJAAN UMUM SEMARANG Tahun 2023

LEMBAR PENGESAHAN

TUGAS AKHIR

PERHITUNGAN *QUANTITY TAKEOFF* PEKERJAAN STRUKTUR MENGGUNAKAN GLODON CUBICOST DAN AUTODESK REVIT PADA PROYEK RUMAH SAKIT TNI AU SURAKARTA

Telah disetujui dan dinyatakan lulus

Seno Hartono Putro NIM. 203011 <u>Alya Putri Febriyuni</u> NIM. 203028

Semarang, 21 Agustus 2023

Dosen Pembimbing F

Dosen Pembimbing II

Agung Bhakti Utama, S.T., M.Sc. NIP.198502162009121002

Febri Fahmi Nakim M.T., M.Sc. NIP. 198202182008121002

Mengetahui, Ketua Program Studi Teknologi Konstruksi Bangunan Gedung

> Julmadian Abda, S.T., M.T. NIP. 197007161997011001

PROGRAM STUDI DIPLOMA III TEKNLOGI KONSTRUKSI BANGUNAN GEDUNG POLITEKNIK PEKERJAAN UMUM SEMARANG Tahun 2023

PERNYATAAN BUKAN PLAGIAT

Saya yang bertanda tangan di bawah ini:

Nama : 1. Seno Hartono Putro

2. Alya Putri Febriyuni

NIM : 1. 203011

2.203028

Menyatakan dengan sesungguhnya bahwa Tugas Akhir yang berjudul "Perhitungan *Quantity Takeoff* Pekerjaan Struktur Menggunakan Glodon Cubicost dan Autodesk Revit pada Proyek Rumah Sakit TNI AU Surakarta" ini adalah benar-benar hasil karya sendiri, kecuali jika disebutkan sumbernya dan belum pernah diajukan pada institusi manapun, serta bukan karya jiplakan/plagiat. Saya bertanggung jawab atas keabsahan dan kebenaran isinya sesuai dengan sikap ilmiah yang harus dijunjung tinggi. Demikian pernyataan ini saya buat dengan sebenarnya, tanpa adanya tekanan dan paksaan dari pihak manapun serta bersedia mendapat sanksi akademik jika ternyata di kemudian hari pernyataan ini tidak benar.

Mahasiswa I

Seno Hartono Putro NIM. 203011 Semarang, 3 Agustus 2023 Yang Menyatakan, Mahasiswa II

Alya Putri Febriyuni NIM. 203028

ΜΟΤΤΟ

Allah tidak berjanji bahwa langit akan selalu biru, tetapi Allah berjanji bersama kesulitan ada kemudahan.

PERSEMBAHAN

PERSEMBAHAN

Tugas Akhir ini penulis persembahkan kepada :

- 1. Orang tua dan Adik dari Alya Putri Febriyuni tercinta, yang telah mendoakan dan memberi kasih sayang serta pengorbanan selama ini;
- 2. Orang tua dan Kakak dari Seno Hartono Putro tercinta, yang telah mendoakan dan memberi kasih sayang serta pengorbanan selama ini;
- 3. Keluarga besar Alya Putri Febriyuni yang selalu ada untuk menemani dan memberikan semangat selama ini;
- 4. Keluarga besar Seno Hartono Putro yang selalu ada untuk menemani dan memberikan semangat selama ini;
- Keluarga Besar Politeknik Pekerjaan Umum khususnya Prodi Teknologi Konstruksi Bangunan Gedung;
- 6. Para sahabat Alya Putri Febriyuni yang selalu memberikan semangat selama ini;
- 7. Para sahabat Seno Hartono Putro yang selalu memberikan semangat selama ini;

SEMARANG

- 8. Semua yang telah membantu penulis dalam penyusunan Tugas Akhir ini;
- 9. Para pembaca.

KATA PENGANTAR

Segala Puji dan syukur dipanjatkan atas kehadirat Allat SWT berkat rahmat, hidayah, dan karunia-Nya sehingga penulis dapat menyelesaikan Tugas Akhir dengan judul Perhitungan *Quantity Takeoff* Pekerjaan Struktur Menggunakan Glodon Cubicost dan Autodesk Revit pada Proyek Rumah Sakit TNI AU Surakarta sebagai salah satu syarat untuk menyelesaikan studi Diploma 3 prodi Teknologi Konstruksi Bangunan Gedung.

Pada kesempatan ini, penulis menyampaikan terima kasih kepada semua pihak yang telah memberikan bantuan dan dukungan baik moril maupun materil, sehingga proposal ini dapat selesai. Ucapan terima kasih ini penulis tunjukkan kepada:

- Bapak Ir. Thomas Setiabudi Aden, M. Sc., Eng., selaku Direktur Politeknik Pekerjaan Umum;
- Bapak Syamsul Bahri, S. Si., M. T., selaku Wakil Direktur I Politeknik Pekerjaan Umum;
- 3. Bapak Ir. Iriandi Azwartika, Sp-1, selaku Wakil Direktur II Politeknik Pekerjaan Umum;
- 4. Bapak Hariyono Utomo, S. T., M. M., selaku Wakil Direktur III Politeknik Pekerjaan Umum;
- 5. Bapak Prof. Ir. Indratmo Soekarno, M.Sc., Ph.D., selaku Direktur Politeknik Pekerjaan Umum Semarang Masa Jabatan 2019 – Mei 2023;
- 6. Bapak Prof. Ir. Indratmo Soekarno, M.Sc., Ph.D., selaku Direktur Politeknik Pekerjaan Umum Semarang Masa Jabatan 2019 – Mei 2023;
- Bapak Masrianto, selaku Wakil Direktur II Politeknik Pekerjaan Umum Semarang Masa Jabatan 2019 – Mei 2023;
- Bapak Ir. Danang Atmodjo, M.T., selaku Wakil Direktur III Politeknik Pekerjaan Umum Semarang Masa Jabatan 2019 – Mei 2023;
- 9. Bapak Julmadian Abda, S. T., M. T., selaku Kaprodi Teknologi Konstruksi Bangunan Gedung;

- Bapak Agung Bhakti Utama, S.T., M. Sc., selaku Dosen Pembimbing I Tugas Akhir dan Magang yang telah memberikan masukan, saran dan bimbingan dalam pelaksanaan serta penyusunan laporan magang;
- Bapak Febri Fahmi Hakim, S.T., M.T., M.Sc., selaku Dosen Pembimbing II Tugas Akhir dan Magang yang telah memberikan masukan, saran dan bimbingan dalam pelaksanaan serta penyusunan laporan magang;
- Bapak Fany Primanda, selaku Project Manager PT. Nindya Karya (Persero), di Proyek Pembangunan/Peningkatan Rumah Sakit Jajaran TNI Angkatan Udara di Solo dan Malang;
- Bapak Sofi Dwi Septiawan, selaku Site Engineering Manager PT. Nindya Karya (Persero), dan selaku Pembimbing Magang kami di Proyek Pembangunan/Peningkatan Rumah Sakit Jajaran TNI Angkatan Udara di Solo dan Malang;
- 14. Bapak Ahmad Zaenal Arifin dan Bapak Rochman Nur Amin, selaku Quantity Surveyor PT. Nindya Karya (Persero) dan Mentor Lapangan kami di Proyek Pembangunan/Peningkatan Rumah Sakit Jajaran TNI Angkatan Udara di Solo;
- 15. Seluruh jajaran *Staff Engineer* dan lapangan serta jajaran Manager PT Nindya Karya (Persero) Tbk, Tim Proyek Pembangunan/Peningkatan Rumah Sakit Jajaran TNI Angkatan Udara Solo (RSAU dr. Siswanto Lanud Adi Soemarmo Solo) yang membantu, membimbing, mengawasi serta memberikan ilmunya kepada penulis selama pelaksanaan magang;
- 16. Kepada orang tua dan keluarga tercinta yang tidak henti-hentinya memberikan dukungan serta doa kepada kami;
- 17. Kepada teman-teman Tetap Tegar Kuliah yang telah memberikan saran serta dukungan selama kuliah hingga kegiatan magang berlangsung;
- Kepada Keluarga Jusindo yang telah memberikan saran serta dukungan selama kuliah hingga kegiatan magang berlangsung;
- 19. Kepada Nadia Ananingsyah, Inge Laurensia, dan Nukhbah Salsabila yang telah memberikan saran serta dukungan selama kegiatan magang;
- 20. Kepada teman-teman UNS seperjuangan magang yang telah memberikan saran serta dukungan selama kegiatan magang.

Penulis menyadari bahwa perkembangan teknologi dan BIM sangat cepat. Untuk itu penulis mengharapkan kritik dan saran yang membangun dari semua pihak. Akhir kata semoga Tugas Akhir ini dapat bermanfaat bagi penulis dan pembaca serta berguna untuk perkembangan ilmu pengetahuan utamanya pada bidang Teknik Sipil.

	Semarang, 3 Agustus 2023
	Penulis,
Mahasiswa I	Mahasiswa II
TEKNIK PEK	ERJAANU
Seno Hartono Putro	Alya Putri Febriyuni
NIM. 203011	NIM. 203028
SEMAR	RANG

DAFTAR ISI

LEMBAR PERSETUJUANi
LEMBAR PENGESAHAN ii
ABSTRAK
PERNYATAAN BUKAN PLAGIAT iv
PERSEMBAHAN
MOTTO vi
KATA PENGANTAR vi
DAFTAR ISI ix
DAFTAR TABEL
DAFTAR GAMBAR xii
BAB 1 PENDAHULUAN
1.1 Latar Belakang 1
1.2 Rumusan Masalah
1.3 Tujuan Penelitian
1.1 Sasaran Penelitian
1.5 Manfaat Penelitian 4
1.6 Batasan Penelitian
BAB 2 TINJAUAN PUSTAKA
2.1 Quantity Takeoff
2.2 <i>Quantity Takeoff</i> Struktur Bangunan Gedung
2.3 Building Information Modeling (BIM)
2.4 Construction Cost Estimate Accuracy Ranges
2.5 Penelitian Sejenis Terdahulu
BAB 3 METODE PENELITIAN
3.1 Jenis dan Desain Penelitian
3.2 Lokasi Penelitian
3.3 Pengumpulan Data Sekunder
3.4 Populasi dan Sampel
3.5 Tahapan Penelitian
BAB 4 HASIL PENELITIAN DAN PEMBAHASAN
4.1 Pengumpulan Data Sekunder

4.2	Pemodelan Menggunakan Autodesk Revit dan Cubicost TAS & TRB	38
4.3	Pengelompokan Data	57
4.4	Analisa Perbandingan Quantity Takeoff	68
BAB 5	5 KESIMPULAN DAN SARAN	77
5.1	Kesimpulan	77
5.2	Saran	78
DAFT	AR PUSTAKA	79
LAM	PIRAN	82

DAFTAR TABEL

Tabel 2. 1 Tabel Contoh Perhitungan SMM	7
Tabel 2. 2 Penelitian Sejenis Terdahulu	24
Tabel 4. 1 Nilai Range Minimum dan Range Maximum	59
Tabel 4. 2 Tabel Kategori Nilai Persen Selisih	60
Tabel 4. 3 Tabel Hasil Quantity Takeoff Pile Cap dan Tie Beam	61
Tabel 4. 4 Tabel Hasil Quantity Takeoff Plat dan Kolom	62
Tabel 4. 5 Tabel Hasil Quantity Takeoff Balok	63
Tabel 4. 9 Tabel Hasil Quantity Takeoff Iterasi 2 Pile Cap dan Tie Beam	65
Tabel 4. 10 Tabel Hasil Quantity Takeoff Iterasi 2 Plat dan Kolom	66
Tabel 4. 11 Tabel Hasil Quantity Takeoff Iterasi 2 Balok	67
Tabel 4. 27 Hasil Perbandingan Volume Bekisting Pekerjaan Pile Cap P1	69
Tabel 4. 31 Hasil Perbandingan Volume Bekisting Pekerjaan Balok G2A5	71
Tabel 4. 30 Hasil Perbandingan Volume Beton Pekerjaan Balok G25	74
Tabel 4. 32 Hasil Perbandingan Volume Pembesian Pekerjaan Balok B25	76

SEMARANG

DAFTAR GAMBAR

Gambar 2. 1 Perhitungan Pengecoran Kolom dan Dinding 11
Gambar 2. 2 Perhitungan Pengecoran Balok dan Pelat 12
Gambar 2. 3 Tabel SMM Contoh Perhitungan Volume Pengecoran 14
Gambar 2. 4 Bekisting Kolom
Gambar 2. 5 Bekisting Balok
Gambar 2. 6 Bekisting Tepi Pelat Lantai
Gambar 2. 7 Floor Plan 17
Gambar 2. 8 Tabel SMM Contoh Perhitungan Volume Bekisting
Gambar 2. 9 Ukuran Baja Tulangan Beton Polos 19
Gambar 2. 10 Ukuran Baja Tulangan Beton Ulir
Gambar 2. 11 Kait Tulangan Struktur
Gambar 2. 12 Kait Tulangan Sengkang 21
Gambar 3. 1 Lokasi Proyek
Gambar 3. 3 Diagram Alir Tahapan Penelitian 34
Gambar 4. 1 Standard Detail Kuat Tekan Beton
Gambar 4. 2 Tegangan dan Regangan
Gambar 4. 3 Pengaturan Grid pada Revit
Gambar 4. 4 Pengaturan Level pada Revit
Gambar 4. 5 Perintah Pondasi pada Ribbon 40
Gambar 4. 6 Hasil Penempatan Pondasi pada Grid 40
Gambar 4. 7 Perintah Beam pada Ribbon 40
Gambar 4. 8 Hasil Penempatan Tie Beam atau Balok pada Grid 41
Gambar 4. 9 Perintah Column pada Ribbon 41
Gambar 4. 10 Hasil Penempatan Kolom pada Grid 42
Gambar 4. 11 Perintah Floor pada Ribbon 42
Gambar 4. 12 Hasil Penempatan Plat pada Grid 42
Gambar 4. 13 Pilihan Schedule/Quantities pada Opsi Schedules 43
Gambar 4. 14 Pengaturan pada Window New Schedule 43
Gambar 4. 15 Input Parameter Pembetonan 44
Gambar 4. 16 Quantity Takeoff pada Pembetonan

Gambar 4. 17 Perintah Section pada Ribbon View	. 44
Gambar 4. 18 Rebar Shape dan Properties Rebar	. 45
Gambar 4. 19 Pilihan Schedule/Quantities pada Opsi Schedules	. 45
Gambar 4. 20 Pengaturan pada Window New Schedule	. 46
Gambar 4. 21 Input Parameter Bekisting	. 46
Gambar 4. 22 Quantity Takeoff pada Pembetonan	. 47
Gambar 4. 23 Quantity Takeoff pada Bekisting	. 47
Gambar 4. 24 Toolbar Identifikasi	. 48
Gambar 4. 25 Hasil Pemodelan Pile Cap	. 48
Gambar 4. 26 Hasil Pemodelan Tie Beam atau Balok	. 49
Gambar 4. 27 Hasil Pemodelan Kolom	. 50
Gambar 4. 28 Hasil Pemodelan Plat Lantai	. 51
Gambar 4. 29 Window Sekumpulan	. 51
Gambar 4. 30 \sum Hitung Bangunan Cubicost TAS	. 52
Gambar 4. 31 Pilihan Lantai yang Akan Dih <mark>i</mark> tung	<mark>.</mark> 52
Gambar 4. 32 Hasil Volume Beton dan Bekisting	. 53
Gambar 4. 33 Software Cubicost TRB	. 53
Gambar 4.34 Memberi Nama Cubicost TRB	. 53
Gambar 4.35 Import Model Cubicost TAS ke Cubicost TRB	. 53
Gambar 4.36 Select Model Cubicost TAS ke Cubicost TRB	. 54
Gambar 4.37 Select Model Cubicost TAS ke Cubicost TRB Klik Start	. 54
Gambar 4.38 Select Floor List Cubicost TAS ke Cubicost TRB Klik Next Step.	. 55
Gambar 4.39 Import Cubicost TAS ke Cubicost TRB Klik Finish	. 55
Gambar 4.40 Edit Attribute dan Parametric Drawing Cubicost TRB	. 56
Gambar 4.41 Gambar dan Detail Pilecap Autocad	. 56
Gambar 4.42 Mengisi tulangan pada parametric drawing	. 57
Gambar 4.43 Outpot TRB ke Ms. Excel	. 57
Gambar 4. 44 Volume Persen Selisih Pile Cap P1	. 58
Gambar 4. 45 Mencari banyak kelas atau interval	. 59
Gambar 4. 46 Calculated Value pada Revit	. 69
Gambar 4. 47 Luas Bekisting di Cubicost	. 70
Gambar 4. 48 Deduksi pada Pile Cap P1 di Cubicost	. 70

Gambar 4. 49 Calculated parameter di Revit	71
Gambar 4. 50 Luas Bekisting di Cubicost	72
Gambar 4. 51 Deduksi pada Balok G2A5 di Cubicost	72
Gambar 4. 52 Calculated parameter pada Balok di Revit	73
Gambar 4. 53 Panjang Sumbu pada Modeling Balok G2A5 di Revit	73
Gambar 4. 54 Panjang Sumbu pada Modeling Balok G2A5 di Revit	74

